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Abstract

Helical dipole magnets are to be used in RHIC to perform spin manipula-
tions of polarized proton beams. The issue of field quality in these devices leads
one to consider the effects of “rotating” multipole fields on beam performance,
such as tune shifts and chromaticity. After a short discussion of the intrinsic
field nonlinearities of a “twisting” dipole field, estimates of the magnitudes of
tune shifts in the RHIC helical Snakes due to magnet harmonics are presented.

1 Helical Dipoles in RHIC

Helical dipole magnets will be used to maintain polarization in RHIC. These magnets
have a dipole cross section, whose field direction rotates about the longitudinal axis
of the magnet through 360◦ over the length of the device. To make a “Siberian
Snake,” four superconducting helical dipole magnets are placed in a common cryostat
in a straight section in RHIC. (This straight section lies in a “dispersion suppressor
region” of the RHIC lattice, roughly the length of a standard RHIC dipole magnet.)
The two “inner” Snake magnets have equal and opposite field strengths, as do the
two “outer” magnets. The field strengths are chosen so that the overall trajectory
of the particles is left undisturbed outside the Snake, but the spin direction of the
particles is rotated by 180◦ about a horizontal axis pointed 45◦ from the longitudinal
direction of motion.

In addition, helical dipoles are also used to rotate the spin by 90◦ into the lon-
gitudinal direction at the interaction points (IP), and back to vertical on the other
side of the IP. These Rotators consist again of four helical magnets, but the helicity
of two of the magnet coils (second and fourth) are left-handed, whereas the helicity
of the other two are right-handed (as are all the Snake magnets).
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1.1 The helical dipole field

The field generated by a dipole magnetic moment spiraling around the longitudinal
axis 1 can be found by determining the scalar potential satisfying Laplace’s Equation,
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Using the usual separation of variables, Φ = R(r)Q(φ)Z(z), we get three differential
equations
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The repeat period of the helical field is λ = 2π/|k| and ν is set equal to one since
the central dipole field repeats after φ = 2π. We see that the radial solutions are
Modified Bessel functions. With these boundary conditions, the fields found by taking
~B = −∇Φ are

Br = 2B0[I0(kr)− I1(kr)

kr
](cos kz sinφ− sin kz cosφ) (4)

Bφ = 2B0
I1(kr)

kr
(cos kz cosφ+ sin kz sinφ) (5)

Bz = −2B0I1(kr)(cos kz cosφ+ sin kz sinφ) (6)

In these solutions, we have assumed that the central dipole field B0 points vertically
upward at the entrance of the helix (i.e., at z = 0.) If we look at Bx = Br cosφ −
Bφ sinφ, By = Br sinφ + Bφ cosφ and expand these fields near the longitudinal axis
(x, y small), then,
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To first order, the transverse fields are just By = B0 cos kz, Bx = −B0 sin kz as
desired. However, we see that for significant displacements, there are nonlinear terms
which will contribute to the particle motion. As we shall see in the next section, the
trajectories of particles through the helical magnet systems can be significant.

1See, for example, J. P. Blewett and R. Chasman, J. App. Phys., 48 (1977) 2692; another
derivation can be found from A. Luccio, AGS/AD/Tech. Note No. 399 (1994).
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Figure 1: Horizontal and vertical trajectories through a RHIC Snake.

1.2 Trajectory in a helical dipole field

For small transverse displacements, the particle motion in a helical field is determined
by

x′′ ≈ − B0

(Bρ)
cos ks (10)

y′′ ≈ − B0

(Bρ)
sin ks (11)

which have solutions

x(s) = x0 −
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(Bρ)
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k2
(1− cos ks) + x′0s (12)

y(s) = y0 +
B0

(Bρ)

1

k2
sin ks+ (y′0 −

B0

(Bρ)

1

k
)s (13)

(Note that here we have switched to the symbol “s” for the longitudinal coordinate.)
If the initial trajectory into the helix has zero slope, then we see that after pass-
ing through a complete helix (i.e., through a distance L = λ) the trajectory ends
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up again with zero slope, the horizontal displacment is unchanged, and the vertical
displacement is altered by an amount

∆y = − B0L

k(Bρ)
.

Again, this is only approximately true, because we have ignored the nonlinear terms
of the fields. But for estimating the magnitudes of effects, this description of the
trajectory is adequate.

With the solution above, one can estimate the total vertical deflection within a
Snake. For the RHIC system, which has four helical magnets with fields B1, −B2,
B2, −B1, the maximum deflection will be −(L/k(Bρ))(B1 − B2) = -[(2.4 m)2/(2π·
80 T-m)] (1.2 T - 4 T) = 32 mm at the injection energy of 24.4 GeV.

The solutions x(s) and y(s) throughout a complete RHIC Snake system (4 helical
dipoles) are displayed in Fig. 1; a three dimensional plot of the trajectory is shown
in Fig. 2.

Figure 2: Three dimensional view of the trajectory through a RHIC Snake.

2 Effects of the Nonlinear Field

Since the helical twist produces a sextupole-like term (i.e., varies with x2), this term
has the potential to contribute to the chromaticity of RHIC. In addition, the particles
do not pass through these devices “on axis.” In fact, as we have seen, the trajectories
of the particles will pass as much as 30 mm away from the axis of the snake and
rotator magnets. Thus, there is the possibility of feed-down effects from these fields.
A tune shift would be generated from the off-center orbit through the sextupole field.
The magnitudes of these effects are discussed below.
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2.1 Chromaticity and Tune Shift from Ideal Snake

The chromaticity due to a sextupole-like field is given by

∆ξ =
1

4π

∫ β(s)

(Bρ)
D(s)

∂2By

∂x2
ds (14)

where β(s) and D(s) are the amplitude function and dispersion function of the ac-
celerator at the location of the field. For the intrinsic nonlinear field of the helical
dipole, ∂2By/∂x

2 = B0(k2/4) cos ks and hence the chromaticity will be given by

∆ξ =
k2B0

16π(Bρ)

∫ λ

0
β(s)D(s) cos ksds (15)

which, for small variations in β and D through the helix, will tend toward zero.
A more detailed calculation, using the amplitude function and dispersion function
variation throughout the Snake, shows that the chromaticity contribution is 0.001.

The tune shift which is fed down from the quadratic field variation is given by

∆ν =
1

4π
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∂By

∂x
ds (16)

=
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16π(Bρ)
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0
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≈ −βave
8k

(
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(18)

for a single helical dipole. For a complete Snake, with four helices, the total tune
shift is

∆ν ≈ −βave
4k

(
B2

1 +B2
2

(Bρ)2

)
.

We see that the tune shift contributions add up, since they depend on the square of
the field strengths. For an average β of 30 m, a helical dipole length of 2.4 m, and
fields of 4 T and 1.2 T, the tune shift at injection energy (24 GeV) would be rougly
-0.007, or -0.015 for two Snakes. This shift can easily be controlled by the RHIC
quadrupole correction system.

It is also interesting to note that the tune shift depends upon the sign of k. Thus,
in a Rotator, where the magnets are left-handed then right-handed, these tune shift
contributions will tend to cancel.

3 Description of Magnet Error Fields

Suppose the transverse magnetic field within a thin cross-section of a superconducting
helical dipole magnet is described by the usual multipole expansion,

∆Byh = B0 Re

[∑
n

(bn + ian)(xh + iyh)
n

]
(19)
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where bn and an are the “normal” and “skew” components of the field, and B0 is the
desired dipole field. Here, ∆Byh and ∆Bxh represent “errors” to the desired field of
the helical magnet. The coefficients bn and an are the quantities which the magnet
designers try to control when designing the ideal cross section of the magnet.

Through the helical magnet, this field distribution is rotated by an angle θ(s) =
2πs/λ ≡ ks following the distance s along the longitudinal axis of the magnet, where
λ is the length corresponding to a full twist of the helical field. For the Snake and
Rotator magnets in RHIC, λ is essentially the magnetic length of the magnet. This
rotation of the central field is shown schematically in Fig. 3. Again, xh, yh are the
coordinates corresponding to the central field (i.e., the central dipole field points
along yh), while x and y are the “real space” coordinates. Then, since ∆Bx =

Figure 3: Rotating coordinates of dipole field components.

∆Bxh cos ks−∆Byh sin ks, and ∆By = ∆Bxh sin ks+ ∆Byh cos ks we can express the
field error at x and y in terms of the usual multipole coefficients:

∆By = B0bnr
n[cosnφ cos(n+ 1)ks+ sinnφ sin(n+ 1)ks]

−B0anr
n[sinnφ cos(n+ 1)ks− cosnφ sin(n+ 1)ks] (21)

∆Bx = B0bnr
n[sinnφ cos(n+ 1)ks− cosnφ sin(n+ 1)ks]

+B0anr
n[cosnφ cos(n+ 1)ks+ sinnφ sin(n+ 1)ks] (22)

where, as usual, x = r cosφ and y = r sinφ. For simplicity, we will assume the skew
components are zero in the subsequent discussion, and we will examine the effects of
the “allowed” normal multipole terms, which will be the most significant.
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3.1 Dipole Error Field

For a dipole error field, n = 0, the above expressions reduce to

∆By = B0b0 cos ks (23)

∆Bx = B0b0 sin ks (24)

3.2 Sextupole Error Field

For a sextupole error field, n = 2, and

∆By = B0b2

[
(x2 − y2) cos 3ks+ 2xy sin 3ks

]
(25)

∆Bx = B0b2

[
2xy cos 3ks− (x2 − y2) sin 3ks

]
(26)

3.3 Decapole Error Field

For a decapole error field, n = 4, and

∆By = B0b4[(x4 − 6x2y2 + y4) cos 5ks+ 4(x3y − xy3) sin 5ks] (27)

∆Bx = B0b4[4(x3y − xy3) cos 5ks− (x4 − 6x2y2 + y4) sin 5ks] (28)

4 Effects of Multipole Errors

As before, we would expect multipole errors to generate chromaticity and tune shifts.
One could argue that because the helical fields rotate through 360◦ for each helix,
that the effects of the nonlinear fields would self cancel. This is roughly true for the
chromaticity. However, again because of the large orbit excursions, feed down effects
need to be considered.

The allowed multipole coefficients for one magnet design are shown in Table 1.
The multipoles are in units of 10−4 of B0 at 3.1 cm radius. The use of a 14 in. versus

Design b2 b4

14 in. Yoke
1 current -55 -7.2
2 currents 0.5 1
16 in. Yoke
1 current 2 -3.4
2 currents 0.5 0.5

Table 1: Multipole coefficients for helical magnet design.
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a 16 in. iron yoke will influence the size of the allowed multipoles, as the iron will
begin to saturate with the smaller yoke. This saturation can be partially compensated
through the use of separate currents in the inner and outer layers of the magnet coil.
The question of whether 55 units of b2 and roughly 10 units of b4 are tolerable are
addressed below.

4.1 Chromaticity Contribution

As before, the chromaticity due to the b2 field can be estimated. Here,

∆ξ =
b2

2π(Bρ)

∫ 4λ

0
B0(s)β(s)D(s) cos 3ksds (29)

which will be roughly zero, assuming the lattice functions do not vary much through
each magnet. A detailed calculation gives a result of ∆ξ of approximately 10−4.

4.2 Tune shift due to b2 multipole error

Due to the particle trajectory through the Snake, the tune shift generated by a b2

coefficient in the magnet design will be

∆ν =
b2

2π

∫ 4λ

0
β(s)

B0(s)

(Bρ)
[xco(s) cos 3ks+ yco(s) sin 3ks] ds

Since the integral is taken over all four magnets in the Snake, the central field B0(s)
is written as a function of s. Carrying out the calculation as before, the tune shift
due to the b2 coefficient in the four magnets becomes

∆ν =
b2

2π

βave
(Bρ)

4∑
i=1

Bi ·
(
− 6π

9k3

Bi

(Bρ)

)
(30)

= −2b2βave
3k3

[B2
1 +B2

2 ]

(Bρ)2
(31)

where B1 and B2 are the values of the central dipole fields of the outer and inner helical
magnets. Also, this expression assumes the same value of b2 in the four magnets,
which may actually depend upon the magnetic field strength.

To estimate the size of the effect, we again use the parameters βave = 30 m, λ =
2.4 m, fields of 4 T and 1.2 T, and we’ll use the large value for b2 given in Table 1,
namely b2 = −55× 10−4/(3.1 cm)2. This yields a tune shift of ∆ν = −0.017 for one
Snake, or a total shift of -0.034 for two Snakes in one ring. Again, this is a noticeable
tune shift, but one that can be compensated easily by the RHIC correction system.
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4.3 Tune Spread due to b4 Feed Down

Lastly, we estimate the tune spread induced by feed down of a b4 multipole coefficient
in the helical magnet design. Due to an octupole-like magnetic field (∼ x3), the tune
of a particle will vary quadratically with betatron amplitude according to:

∆ν(a) =
1

2π

3

8
Ka2 (32)

where

K ≡ β0

6(Bρ)

∫ (
β

β0

)2
∂3By

∂x3
ds. (33)

Here, β0 is the value of the amplitude function where the particle’s oscillation ampli-
tude a is measured. So, a field error with a b4 contribution

∆By = B0b4[(x4 − 6x2y2 + y4) cos 5ks+ 4(x3y − xy3) sin 5ks] (34)

will generate a non-zero feed down into an octupole-like field which yields

∂3∆By

∂x3
= B0b4[24x cos 5ks+ 24y sin 5ks]. (35)

Integrating over a single helical magnet, and again assuming the amplitude function
does not vary much over this region, the contribution to the tune shift will be

∆ν(a) ≈ 1

2π

3

8

24

6

B0b4

(Bρ)

a2

β0

β2
ave

(
2π

5

B0

(Bρ)k3

)
(36)

=
3

10

B2
0b4

(Bρ)2

a2

β0

β2
ave

k3
(37)

for a single helical magnet. For one complete Snake, the tune shift is thus approxi-
mately

∆ν(εn) ≈ 3

5π

β2
aveb4

γk3

[B2
1 +B2

2 ]

(Bρ)2
εn (38)

where εn is the normalized emittance of the single particle, and γ is the relativistic
Lorentz factor.

For the RHIC beam with a 95% normalized emittance of 20π mm-mr, there would
be a tune spread at injection due to a b4 of −7 units on the order of

δν ≈ 3

5π

(30m)2(−7 · 10−4/(3.1cm)4)

26(2π/2.4m)3

[(4T)2 + (1.2T)2]

(80Tm)2
20π × 10−6m (39)

= −5× 10−5, (40)

or, −10−4 for two Snakes. Even if the emittance were 50 π mm-mr, and the decapole
coefficient were 20 units, the tune spread across the beam would be less than 0.001.
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Thus, the effect of b4 in the Snake cross section design should not be a concern for
RHIC operation so long as it is within reasonable bounds.

It is interesting to note that the next term in the field expansion Eq. 8 will be of
order x4 and will thus feed down into an octupole-like term. The tune spread due to
this intrinsic nonlinear field is roughly 1000 times smaller than that estimated above.

5 Concluding Remarks

We see that the effects of the Snakes in RHIC on beam performance should be rather
benign, even for seemingly large multipole content in the magnet designs. The tune
shifts and chromaticities due to the intrinsic nonlinear fields as well as multipole error
fields inevitible in the magnet design and construction appear at first glance to be
insignificant in comparison with the compensations that will need to be performed due
to the errors in the main dipole and quadrupole magnets of the ring. The fact that the
Snake magnets are not tuned during acceleration or storage, means that operationally
the compensation of their effects should be straightforward. The fact that the tune
shifts considered here vary with odd powers of k, tells us that the Rotators should
contribute even less to these effects, since their helicity switches every other magnet.
We did not look at the effects induced by the skew multipole coefficients, which will
lead to coupling of the transverse planes. However, these effects should be much
smaller than the coupling induced by the helical field itself (in particular, the rather
large Bs at large orbit excursions), which has already been estimated to be small.2

One could contemplate designing the magnet cross sections with multipole fields
which could partially compensate the intrinsic nonlinearities of the helical dipole
field. However, since all of these effects are small, this would not be a worthwhile
endeavor. The major operational challenge for the Snakes and Rotators will be the
proper manipulation of the particle orbit and particle spin, as it should be.

2E. D. Courant, RHIC/AP/47, November 1994; F. Pilat, RHIC/AP/56, February 1995.
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